LCA in Sustainable Infrastructure

This article provides an insight into the latest sustainability policies and regulations that have integrated the Life Cycle Design approach. Continue reading

eToolLCD’s Unique Template System

One of the defining features of eToolLCD is our unique template system.  Our ever growing library contains 1000’s of construction templates applicable to all kinds of building and infrastructure projects being built across the globe. The template approach ensures:

  • Repeatable results and consistancy
  • More consistent, accurate and comparable assessments
  • Geographically more relevant
  • Continual improvement in accuracy
  • A deeper understanding of construction make-ups and hotspots

Templates can contain high levels of detail, inputs and assumptions, work that is not only fully referenced and transparent but shared across the entire eTool community to utilise, adapt and improve on

You will almost always find a template that matches or is close to matching your specifications however, the templates are fully adaptible, users can clone and adjust templates to make the required updates.  These can then get added to the library for the rest of the eTool community to use so, every project gets completed in eToolLCD makes LCA quicker and easier for the next project!

Each template will include any number of materials, people and equipment entries with each individual entry having pre-selected LCA variables.

These are combined into complex whole make-ups such as the below, curtain walling insulated spandral panel:

Caurtain Walling

The user inputs the area of the panel in their project and the tempalte system autoamtically calculates the capping, mullions, transoms, fixing brackets, framing, glazing and insulation based on the proportions used to build the original tempalte.

So, users simply need to match their construction specification to the corresponding template and populate the approriate areas/quantities. This means that complex LCA models containing 100s of material entries can be built quickly from only a small number of basic inputs (floor area, wall area, roof area etc).

Hear what some of our users say about our template system.

“eToolLCDs prebuilt templates made it relatively easy to build up the baseline LCA model and then quickly compare different design options”

Ben Carr, AECOM

“The software works well, and the predefined templates that are selected to describe each building element align well to the architectural specifications.”

Anthony, ADW Developments

“The template approach to etooLCD software means that the initial process of formulating a baseline model is relatively quick, so time can be focussed on assessing options and recommendations.”

Peter, CHB Sustainability

For a detailed demonstration of our template system check out this video from our support pages.

 

 

Related Posts:
Creating Templates
Automated Reporting

eToolLCD Automated Report Branding

eTools automated reporting allows users to quickly produce high-quality reports from their models without the need to adjust and edit in word.  Having produced many early LCA reports manually in the early days we understand the frustrations that arise from copying into spreadsheets, word reports, formatting, finding errors and re-working.  We highlighted this is a big drain on resources that would be much better spent improving the actual quality of the modelling, recommendations and engaging design feedback. You can read more and see examples of our growing suite of automated reports here.

We also understand that users have their own branding and like to put their stamp on reports issued to clients.  Our reports can be downloaded in either word, pdf or excel formats allowing users to make edits and format as they wish.

For Specialist subscribers users we have introduced branding of reports, from a users profile they can upload their logo.

company logo

 

The logo then feeds through to the title page and header of the reports run from the users’ models.

report example logo

 

Freeing up your time to focus on the really interesting parts of your LCA studies!!

 

Related Posts: Setting Up Your Profile, Automated Reporting

eToolLCD Certification Service

Background

Ever since the early days of eTool we highlighted one of the risks to widespread LCA adoption is the varying levels of quality in building LCA models and subsequent loss in confidence of the results and conclusions drawn.  To mitigate this we have ingrained a formal certification process provided inclusive within your subscription/project access fees.  During the certification process, a senior eTool LCA practitioner is made available to your project for the purposes of:

  • Assisting the LCA team with completing the study in compliance with relevant standards (we have now completed over 400 projects for BREEAM, LEED and Green Star so will ensure the model is completed to the correct requirements and no hold ups occur during the BREEAM/LEED/Gren Star verification).
  • Providing credit for “3rd party verification” under BREEAM 2018.
  • Reducing the risk to your clients and elevating the professionalism of your service by peer-reviewing your LCA study to ISO 14040 and ISO14044 standards.
  • Assisting the LCA team with challenging concepts or modelling requirements.
  • Improving the LCA teams efficiency in completing LCA/LCCs using eToolLCD.
  • Providing the LCA team with potential strategies that may be worth considering to reduce the impact of the design.

The certifier will be “suitably qualified” to undertake peer reviews having as a minimum:

  • Completed at least 3 paid for LCAs within the last 2 years
  • eToolLCD advanced training course
  • Experience or qualifications in interpreting construction documentation

The certification system ensures that consistent, high-quality LCA studies are produced from the eToolLCD software. This lends further credibility to your work when clients see the eTool brand on your reports.

The certification is provided for up to 6 designs within an eToolLCD Building or Infrastructure entity. These designs may be very early stage models, or later stage complete LCA/LCC models or a combination, typically:

  • Concept Design Stage Base Model
  • Concept Design Stage Improved Model(s) (including all options modelled for BREEAM)
  • Concept Design Stage Final Model
  • Technical Design Stage Base Model
  • Technical Design Stage Improved Model(s) (including all options modelled for BREEAM)
  • Technical Design Stage Final Model

eTool understand that good LCA/LCC modelling is an iterative process and will be on-hand from the outset to provide assistance and answer any questions surrounding the modelling and certification.

Certification

Process:
1. eToolLCD user submits initial model/s for review
2. eTool staff complete QA / QC Checks on eToolLCD model/s and provides feedback
3. eToolLCD user complete / update eToolLCD model/s
4. eToolLCD user submit final model/s for certification
5. eTool staff completes certification (and clones model to BRE account if required)

Inclusions:
– An independent review of the eToolLCD designs (6 or less) conducted by a competent LCA practitioner commenting where applicable against each project, structure and model quality checks. As a minimum, the following is reviewed:

– In addition to ISO14040 and ISO 14044 quality checks the certifier will also review the following for both baseline models and optioneering models, in line with BREEAM 2018 requirements

  • Material quantities are within +-10% of those shown in design documentation (both concept and technical design stage models)
  • Where default figures for product service life, transport distance and construction waste have been adapted from generic material default values, there is adequate justificationa dn references.
  • Adhesives are inlcuded if cover more than 20% of materials surface
  • Study period of 60 years

Deliverables:
– eToolLCD Certifier Review Statement documenting checks made, comments and user responses using the certification checklist. See example report here.

– Phone/email/weblink support throughout the process

For further information see eTool terms and conditions

Super Credit (Materials+Energy+Water) for Green rating schemes

800px-Superman_shield_small
eTool believes the “Super Credit” based on the life-cycle methodology should be adopted in the short term as an innovation credit (alternative pathway for material, water and energy) in rating schemes like Green Star and ISCA.

In Green Star, LCA could be used to reward not only “Materials” but also the ‘Greenhouse Gas Emissions’ and ‘Potable Water’ credits when whole of building LCA is considered. Operational energy and water impacts are accounted for in separate credits within the existing rating tool – ‘Greenhouse Gas Emissions’ and ‘Potable Water’, respectively. Given the LCA would also account for these impacts, the proposed approach uses the LCA model as a pathway to integrate all three credits. This option became known as the ‘super credit’.

Project could potentially tap into 39 points under the Green Star – Design & As Built (v 1.2) rating tool using this performance based approach:

Materials (Life Cycle Assessment):  7 Points

Greenhouse Gas Emissions (Modelled performance): 20 Points

Potable Water (Performance pathway): 12 Points

This approach means that the energy and water modelling will still need to be done following the original credit description, however the inclusion of the “operational impact” data (modules B6 and B7) into the same LCA model will enable the most accurate and transparent environmental picture of a building project. Understanding how each part of the building (from material choice, water supply and treatment, up to a HVAC system selected) accounts for the total environmental performance, is a key for better design decisions. In addition, the combination of energy, water and material credits into one LCA model and quantifying points achievable via the ‘Super credit” could help to close some gaps of the Green Star Design and As Build 1.2 rating scheme.

Another rating scheme that is currently adopting the life-cycle philosophy and will benefit from it in a short term is IS – Infrastructure Sustainability.

As a member of the iSupply register with ISCA (Infrastructure Sustainability Council of Australia), eTool suggested the 3-in-1 LCD for materials, energy water ISCA credits. Among all rating schemes in Australia, IS rating is probably most innovative and progressive, adopting the continuous improvement processes and developing a new WWEM tool to combine water, waste, energy and materials calculators into one tool, sort of a “super calculator”.

With an LCA conducted using eToolLCD software even more IS credits could be achieved: Mat-1, or RSO-6, Ene-1, Ene-2, Wat-1, Wat-2, ECN-4, Man-6, Man-7, Lea-3, Innovation credits, resulting in up to 40 points (or almost half of the IS rating 2.0).

Super credit 3 ISCA

Siloed thinking of environmental performance leads to adverse trade offs for the planet. LCA prevents these adverse trade offs, and when coupled with a life cycle design process leads to large environmental performance improvements. There is now a strong trend in uptake of LCA for environmental decision making.

Examples below:

– In standards development: CEN was directed by the EU to produce standards for voluntary rating of sustainable buildings. They developed “EN 15978: Sustainability of Construction Works, Assessment of Environmental Performance of Buildings, Calculation Method” which is entirely LCA-centric.

– In regulation: Laws such as the 2011 Grenelle regulations in France require mandatory LCA-based environmental product labelling.

– In Green Building Rating Schemes: DGNB. LCA forms the bulk of the environmental assessment, LCC for economic and there are some tick boxes for social credit.

– A new EU rating scheme Level(s) that encourages the use of the LCA. Still early phases but it could end up being rolled out across the EU.

eTool believes the “super credit” would enable any sustainable rating scheme to progress towards the most holistic assessment methodology.

The advantages of the super credit

Good Environmental Outcomes: There is a much lower risk of negative trade-offs by integrating embodied and operational impact into the same analysis, instead of understanding the impacts of different categories separately.

More tangibility for the design team to understand the contribution of each improvement strategy and prioritise them. For example: recycled carpet vs lighting sensors vs high efficiency HVAC vs high efficiency water fixtures.

– Identifying different hot spots of a building depending on location (energy and water grids type) and building type. For example, an office building located in Victoria today (very high operational energy requirement, highly intensive grid) will likely need to focus largely on energy efficiency to improve environmental performance. Alternatively, residential buildings in Tasmania will likely have to put much more effort into materials, transport, construction, maintenance, replacement, water efficiency etc as the impacts relating to energy will be a much smaller percent of a reference buildings.

Aligned with global trend towards LCA (future-proofs the rating tool) that accounts for whole of project impact analysis.

Simplifies the maintenance of the existing calculator tools. Single LCA model to enter results from materials, energy and water.

Time-efficiency. The LCA outputs can be used to address multiple credits, not only related to the materials, energy, water, but also cost, innovation, waste, recycling content, maintenance and management decisions.

The reasons put forward for not adopting the super credit are not aligned with eTool’s experience in the application of LCA in the design process of hundreds of projects in Australia and abroad. LCA is only a “relatively coarse approach” if the practitioner is not guided on the method of underlying calculations that are applied in the LCA.

In the case of Green Star and ISCA projects there is nothing preventing the use of the same calculation methods for Operational Energy and Water that exist today (and indeed these are the figures used in Green Star and ISCA LCA studies).

Module A1 – A5 are arguably more predictable than water and energy consumption estimates (which rely on occupant behaviour). The significant challenges faced by eTool as a business who supply LCA software and LCA services to the construction sector are not generally technical in nature. For example, we’d consider the psychology of building developers to adopting strategies that the LCA identifies to improve the environmental performance of their projects to be more challenging.

We are not aware of challenges that would prevent the industry from adapting to a rating scheme using LCA as a core calculator for environmental performance (as for example DGNB have done) and offer our assistance in overcoming those challenges facing GBCA, ISCA and other rating systems.

Links between LCA and the Circular Economy

Circular Economy (CE) is a philosophy that has gained a good deal of momentum within sustainable construction recently.  We have seen the new draft London Plan requiring consideration of Circular Economy (as well as embodied carbon) on all major London developments.  eTool also recently contributed to the UKGBC guidance on Circular Economy (a copy can be viewed here) and there is a definite feeling of ground-shift within the industry which is exciting to see.

The key concept behind building circular is that waste is simply a design flaw and that if we can remove it entirely then we will see improvements to the environmental, cost and social performance of our projects.

A circular economy is a global economic model that decouples economic growth and development from the consumption of finite resources. It is restorative by design, and aims to keep products, components and materials at their highest utility and value, at all times (Ellen MacArthur Foundation)

Many aspects of circular principles currently have a qualitative focus.  A quantitative approach, however, can go hand-in-hand with this through LCA. By analysing the environmental and/or economic impacts of the potential circular strategies over the life cycle we can prioritise those that provide the greatest benefit.  There is a lot more that can be drawn from an LCA study than embodied carbon data.

LCA circle graphic

In eTool we measure full impacts over the building life cycle from cradle-cradle and have numerous other environmental indicators that help measure environmental performance beyond Embodied Carbon and life cycle GWP.  One group of indicators now measured in eTool LCAs has been developed by HS2 to help quantify circular principles, see materials efficiency metrics for further details.

Quantifying Benefits

There are numerous circular principles that may produce good environmental outcomes.

• Refurbishing/repurposing/recovering existing buildings or materials
• Specifying materials with high recycled content
• Designing for disassembly and end-of-life reuse
• Designing for longevity/adaptability/reusability where its appropriate.

However, without full life cycle quantification of the strategies under consideration, there is no way of knowing the relative benefits, which ones to prioritise and which ones produce perverse outcomes. For example, recycled aggregate trucked from 70km away actually has much higher impacts today than locally sourced virgin aggregate.

Recycled Aggregate

Global Warming Potential (kgCO2e) for product and transport stage (A1-A4)

Recycled metals, on the other hand, have relatively minor transport impacts (see figure below). eToolLCD contains a growing list of “Recommendation” strategies that users can apply to their LCA work.  We have a tagging system with a new “circular economy” tag for any that relate to refurbish/recycling/deconstruction/longevity.

Module D

Module D of EN15978 relates to “benefits and loads beyond the system boundary” and has particular relevance for circular strategies,

  • D1 – Operational Energy Exports
  • D2 – Closed Loop Recycling
  • D3 – Open Loop Recycling
  • D4 – Materials Energy recovery
  • D5 – Direct Re-use

Under Module D where materials will be recycled at the end of their life, a benefit credit is given in the LCA. For example, if a cladding system is designed for deconstruction the materials are more likely to be recycled at the end of life we will see an improved performance in the LCA from module D (product reuse).

Capture2

1 Tonne of Virgin aluminium shipped 1500km

Allocating recycling loads and benefits can get a little tricky when trying to avoid any double counting of impacts, more information on Module D can be found at this blog post.

Longevity and functional units

Buildings that can last for very long periods are clearly a better use of resources than buildings that get knocked down after 20 years.  The life expectancy of many low-density inner-city commercial buildings is unlikely to reach far beyond 20 years due to redevelopment pressure. However certain high-density megastructures (such as the Shard) will likely still be standing for 100 years or more.  Its going to be a long time before someone thinks they can replace the Shard with a building that will create more value from the real estate. To capture the relative benefits and savings of a buildings life expectancy it is important to apply an appropriate functional unit to the LCA. It is common in the industry to measure impacts in absolute terms over a 60 year period – kg CO2e/m2.  Applying a realistic life expectancy based on building location and density relative to its surroundings and presenting impacts in temporal terms – kg CO2e/m2/year the LCA will present a truer picture of the results.  This is particularly important when considering Circular Economy principles.  Materials going into a building that lasts twice as long before being demolished and sent to landfill will have half the life cycle impacts.

Circular Economy Philosophy

Whilst there are often clear quantifiable benefits of applying circular principles it is important that we do not lose sight of the bigger picture. It makes sense to rely purely on circular economy principles when trying to reduce finite resource exploitation, however, many building materials today actually have an abundance of supply – see our “Are we running out of materials blog post”. When we are trying to optimise for a different environmental problem, for example, Global Warming, purely focussing on the circular economy principles may not necessarily result in a net positive outcome (as shown above).

Circular economy represents one of the many “means” to the end goal of true environmental sustainability. We must be careful to quantify our strategies and avoid applying circularity simply for the sake of circularity which may sometimes be more detrimental to the planet than a linear strategy. We will need tools such as recycling and re-use to achieve a zero carbon future but material consumption is not in itself always a bad thing if done sustainably relative to the alternatives.

 

 

What will green buildings deliver in 50 years?

life cycle design

The construction industry is going through major changes under the Green flag. The greening of building stock and infrastructure becomes more than just an idea, but a strategical attribute in developing the future of the precincts and entire cities all over the world.

The net zero carbon target is ambitious and requires that all new buildings must be operational zero carbon by 2030, and all new and existing buildings must be net zero carbon by 2050.

Transition from building better to building sustainable.

Impact reduction target is a fundamental aspect of concept design and will assist the transition in sustainable construction. Designers and experts are used to discussing energy efficiency, or kWh/m2, but very rarely there is a carbon target (e.g. 100 kgCO2 per m2 of lettable area per year) set at an early project stage (A rough carbon budget for buildings was presented by eTool in a previous blog article).

We hear more often about passive design principles, energy-efficient equipment and storage, carbon-negative materials and a combination of onsite and offsite production of clean energy. Renewable energy generation is increasing at phenomenal speed and it’s transforming the whole economy,  reducing environmental impacts related to building’s operations and manufacturing of construction products.

At a district level, buildings are being thermally and electrically integrated with the community, and energy monitoring platform can track large groups of building performance, scaling up to whole district analysis. Targets climate funding is also helping retrofit existing buildings at municipal level and replicate success cases in other regions.

Different construction sectors define green design through different indicators.

Definition of the green design varies depending on specific needs but aims to accelerate the change towards a future in balance with the planet.

Tenants are motivated by the reduction of operational costs with energy and water bills, but it can also include aesthetics and being environmentally conscious, stating that “I care” or “I am different”.

Home owners would focus on the durability of materials, life of the entire property and low maintenance cost.

Developers would probably look on environmental aspects in combination to total cost and return on investment – called a “Green per Dollar” perspective.

Finally, the precincts and local governments might go with green construction by various reasons: to encourage innovation, long-term city planning including improvement of citizen’s well-being, quality of life and environment.

Life Cycle Design as a method to look inside the black box.

Green design and performance indicators need to be transparent and standardized to satisfy major motivations of groups and individuals. The best way to fully quantify the environmental impact is by looking at the whole of project life cycle performance and using Life Cycle Design (LCD) methodology to model impacts from construction through to the end of life, including use phase impacts. Most importantly, LCD can help to understand the project functionality, and how well it is delivering the proposed primary function. LCD looks at a building through the prism of many features, holistically and over the life time. This prism includes operational energy and water, durability of materials, maintenance and wide spectrum of environmental impacts. LCD approach is combined with Life Cycle Costing to help designers understand the “Green per Dollar” feasibility of improvement initiatives and how economically sustainable the overall design is throughout its lifespan.

Life cycle thinking to build better buildings today.

There´s a global trend in the construction industry to adopt life cycle thinking and we increasingly hear terms like circular economy, cradle-to-grave or even cradle-to-cradle, closed loop recycling or designing for deconstruction. The use of Life Cycle Assessment is increasing in a number of Green Building Rating Schemes (Green Star, LEED, BREEAM, HQE, LBC), and also is the newly available life cycle inventory data, user-friendly LCA software tools, Environmental Product Declarations.

The growth in regulations within the construction industry is also observed, with planning policies mandating environmental reduction targets and improving the general industry know how. Companies are using science based targets to measure efficiency of their climate action plans and understanding how they are related to the UN´s Sustainable Development Goals (SDGs).

To meet changing requirements related to a sustainable future within the construction industry, systems and tools need to be widely used from concept stage on throughout the design development process. This will allow project teams to set ambitious environmental targets and therefore implement the life cycle approach to deliver the buildings of the future already today.

 

 

References:

UN environment – The Global Status Report 2017 – Towards a zero-emission, efficient, and resilient buildings and construction sector

World Resources Institute – What Is the Future of Green Building?

 

Want to learn more about eToolLCD and LCA?  Please register for our next webinar event

We hope this article was useful, stay in touch!

 

How to complete an LCA for BREEAM 2018

life cycle design

From specific products to whole project analysis, LCA is taking off globally to help project teams quantify and improve environmental performance to meet global and national impact reduction targets.  BREEAM have recognised this and the new updates to BREEAM 2018 place a heavy emphasis on the LCA approach.

  • Up to 2 credits available for completing an LCA using IMPACT.  Credits awarded depend on performance against the Bre benchmarks.  Credit is awarded at Stage 4 once detailed design information is available
  • Up to 2.66 further credits available for Superstructure options appraisals during RIBA stage 2
  • Up to 1.33 further credits available for Superstructure options appraisals during RIBA stage 4
  • 1 credit available for substructure and landscaping options appraisal during RIBA Stage 2
  • 1 exemplary credit available for services options appraisal during RIBA stage 2
  • 1 exemplary credit for alignment with LCC
  • 1 exemplary credit “3rd party verification”

Understandably this is a big step change for many design teams used to the traditional Green Guide approach.  However, significant changes are enabling LCA to become common practice for designers, including:

  • newly available life cycle data,
  • user-friendly and cost-effective software platforms,
  • collaborative development of international standards and increased transparency,
  • integration with Life Cycle Costing for economic and environmental accounting
  • LCA legislation in planning policies, EIA and government incentives,
  • increasing uptake in academic research and universities curriculum
  • professional leadership and technical know-how;

The heavy weighting of credits for Stage 2 analysis encourages design teams to consider the life cycle impacts of their buildings at early design stages. (BREEAM require evidence for this to be submitted pre-planning). Applied at project concept stage, LCA provides insight and huge opportunities for life cycle environmental and cost improvements. Performance targets can be set during project preparation and brief, “what if” scenarios are used to assist design development and a detailed report will consolidate results according to project specifications. This “disruptive” practice in sustainable design will hopefully unlock the further potential to decarbonise buildings and infrastructure.

How an integrated design process for BREEAM 2018 works?

Riba graphic

 

LCA Stage 2: Often there will be limited information available at pre-planning and a limited appetite for spending money on LCA.  This is where eTools powerful template system comes into its own.  Our whole building LCA templates allow for quick, rough and ready LCA analysis.  With only basic information the template will fill the gaps using industry average defaults, this can be analysed for hotspots and design options and updated with project specifics as the design progresses through to Stage 4.

Benchmarking:  Although the benchmarking credits do not need to be submitted until Stage 4 the benchmarking report is fully automated from eTool.  So the number of likely benchmarking credits can be analysed early on and design options can be prioritised based on what provides the greatest uplift.

LCC Alignment: Aligning the LCA and LCC is of vital importance for effective LCA work. Quantifying the costs of improvements will help teams prioritise how to get the best environmental gain for least capital spent. With our recent cost functionality, it is a simple step to extract LCC results from your LCA model and report for the Man2 credits. Simply ensure you report the same options in your LCA submission as you do in your LCC reporting.

Substructure and Landscaping:  Our templates system covers all of these elements and they can be added to the model with basic information (eg depth and width of piles or area of macadam road).

Services: Services require a separate model because the Bre IMPACT data cannot currently be used to model services.  We are currently working on alternative datasets that will do this.

3rd Party:  Our certification service is provided to all users projects completed commercially as part of our standard software offering. During the certification process, a senior eTool LCA practitioner is made available to the project and will undertake all quality checks defined in BREEAM.

For further detail on how to run reports for Breeam 2018 from eTool please see our support video here.

To continue supporting this process, eTool have released the eToolLCD Enterprise subscription. Embedding LCA at an organisation level has become easier and will provide added value with centralised ownership of LCA models, inter-company collaboration for integrated design and an unrestricted number of read-only users. 

Designers that have increased demand for LCA services can choose the new Specialist subscription to work on an unlimited number of projects with a fixed software cost.

We are working hard to continue bringing innovative solutions and we are improving eTooLCD with additional life cycle inventories, enhanced Life Cycle Costing functionality and many others that you can check out by creating your account at eToolLCD.

eTool have produced a number of different articles on integrated design using LCA including latest materials comparison, reporting efficiency and additional revenue by selling LCA services. Help us by sharing with friends and colleagues.

Want to learn more?  Please register for our next webinar event

We hope this article was useful, stay in touch!

 

How to ingrain LCA into your design process

life cycle design

A safe environment for future generations is being designed with the increasing use of Life Cycle Assessment. From specific products to whole project analysis, LCA is taking of globally to help project teams quantify and improve environmental performance to meet global and national impact reduction targets.

Significant changes are enabling LCA to become common practice for designers, including:

  • newly available life cycle data,
  • greater importance given to LCA in green building and infrastructure rating systems (LEED, BREEAM and Green Star),
  • user friendly and cost effective softwares,
  • collaborative development of international standards and increased transparency,
  • integration with Life Cycle Costing for economic and environmental accounting
  • LCA legislation in planning policies and government incentives,
  • increasing uptake in academic research and universities curriculum
  • professional leadership and technical knowhow;

Applied at project concept stage, LCA provides so much insight and huge opportunities for life cycle environmental and cost improvements. Performance targets can be set during project preparation and brief, “what if” scenarios are used to assist design development and a detailed report will consolidate results according to project specifications. This “disruptive” practice in sustainable design is unlocking great potential to decarbonise buildings and infrastructure.

How an integrated design process using LCA looks like?

Project Stage and LCA Processes(1)

Life Cycle Design is gaining greater recognition in Green Building and Infrastructure rating systems. Early engagement of LCA consultants will identify impact hot spots and help prioritise improvement strategies that are most cost effective. LCA credits may be easier to achieve as a result of engaging early. 

To continue supporting this process, eTool have just released the eToolLCD Enterprise subscription. Embedding LCA at an organisation level has become easier and will provide added value with centralised ownership of LCA models, inter-company collaboration for integrated design and unrestricted number of read-only users. 

Designers that have increasing demand for LCA services can choose the new Specialist subscription to work on unlimited number of projects with a fixed software cost.

We are working hard to continue bringing innovative solutions and we are improving eTooLCD with additional life cycle inventories, enhanced Life Cycle Costing functionality and many others that you can check out by creating your account at eToolLCD.

eTool have produced a number of different articles on integrated design using LCA including latest materials comparison, reporting efficiency and additional revenue by selling LCA services. Help us by sharing with friends and colleagues.

We hope this article was useful, stay in touch!

 

How to Price Construction Life Cycle Assessment Services

With the general interest in LCA growing rapidly and ramp-up in LCA credits within Breeam NC 2018 imminent, many of our users are asking us how much work is involved in completing an LCA, how long it takes and what they should be charging their clients for undertaking the work. eTool has always maintained a very transparent approach towards our own pricing structure and we thought it might be useful to share our thoughts on pricing LCA consultancy services.  We have highlighted 3 different approaches for costing an LCA described in detail below.

  • Value to the Developer –  This is the approach eTool take for costing an LCA.  We charge a fee that attempts to reflect the value that the LCA provides to the design team, developer and the planet.  In some circumstances, the consulting work to deliver an LCA of a large apartment block may actually be similar to that of a single house. However, the LCA will provide learning outcomes that can have a much higher impact in terms of environmental benefits or life cycle cost reductions.  Let us take the example of two projects in the UK, a large apartment building with 120 dwellings and a construction budget of £30,000,000 and a small single dwelling development with a budget of £150,000.   An attractive strategy identified in the single dwelling may reduce greenhouse gasses by a total of 100tCO2e and also save the occupants £5,000 in life-cycle costs.  In the apartment building, however, a similar strategy may save 10,000tCO2e and over £1,000,000 in life-cycle costs.  Similarly, if a developer has a specific environmental target, the stakes are much higher in the apartment project.  The cost of abatement is quite critical and can severely increase capital costs if not well understood.  For example, if a 50% reduction of life-cycle greenhouse gas emissions is sought, employing the best strategies on the cost abatement curve may cost the developer £500,000 by targeting the lowest cost of abatement, but employing strategies without this consideration may cost them £1,500,000 to achieve the same environmental outcome.   So regardless of the level of effort in the two projects, there’s a much higher potential value that the apartment stakeholders get from a quality LCA and LCC study.  We like this approach as it aligns the consultant’s motives with both the planet and our customer.  The consultant’s role is to deliver value, so a higher fee should yield more value.  This may be realised by greater effort in identifying low impact strategies and optioneering to ensure meaningful reductions in environmental and cost impacts.
  • Bottom Up – Determining the billable hours to complete the work and charging the consultants the hourly rate plus a profit margin.  The total hours spent on an LCA can vary dramatically depending on the following:
    1. Design stage.  The more detailed the information the more complex the modelling becomes.  A “Target setting” LCA will have no more than a design brief as input information and a basic model may take an hour to complete with another few hours of optimising strategies, a stage 2 LCA may have more detailed information available and take half a day to a day and a detailed stage 4 LCA may take a further day to 2 days to complete.
    2. Quality of information available.  Often the most onerous part of any modelling process is gathering the information required.  If this is orderly and well organised then completing the LCA should be very simple. Cost plans and BIM models can contain good levels of information but are these freely available or will it take months to track them down? Are they complete or missing crucial bits of information? Sometimes it can be quicker and easier to measure up drawings manually rather than spending days chasing down an elusive bill of quantities which may not actually exist!
    3. Design Team Engagement. How involved are the design team in the LCA process?  Will they require optioneering for many small details in the design or are they only interested in some basic high-level results?  More engagement is great and very rewarding for the LCA practitioner but can take time.  If the client is only looking for the bare minimum required to award credits under BREEAM then the LCA may be completed very quickly using the eTool automated reports.
    4. Project Management and Margins.  You want to leave room in the scope for unexpected design changes, complex design elements and of course margin. Don’t forget that for LCA to become mainstream we all want this to be a profitable exercise as well!
    5. The LCA software that you use! Choosing the tool most appropriate for your task is of course very important.  For simple embodied carbon calculations on a single material then a simple spreadsheet (or open use eTool) would suffice. For a full whole-of-building-whole-of-life LCA with multiple environmental indicators then dedicated tools will be far more cost and time effective.  Our door is always open to help you understand the full functionality of eToolLCD. Our unique template system, strategy and option recording and automated reporting are just a few features that enable not only the quick building of an LCA model but detailed and in-depth design analysis for effective feedback to the project team. Why not come along to our next eTooLLCD training event and become a registered eTool LCA practitioner. Join our newsletter to stay informed about eToolLCD webinars, updates and training.
  • Top down: What is the market rate for delivering the LCA?  Often it is a case of testing the waters to understand how much the market is willing to pay for the service and matching the price and level of work accordingly. We have seen practitioner LCA quotes ranging from £3k to over £30k!!  If the user is really enjoying the LCA work they may match the price to be competitive with whatever alternative BREEAM strategy is being considered. Considering BREEAM for example, any design effort that equates to over £2,ooo per credit is often considered a costly strategy (project dependent).  Can your competitors deliver the LCA for this fee if so what added value could you bring beyond their offering?  Alternatively, consider how can you streamline your service to get your client excited about engaging the power of LCA no matter the design stage.  For example, we targeted early stage design with a “Target Setting” LCA service which costs under £2000 and is aimed at very early stage design feedback.  Developers are happy with that service but would be very reluctant to engage in a full LCA study that early in the project.  We can deliver this service to an acceptable accuracy by employing whole building templates and high-level strategy optioneering.  The design team gets quality, quantified feedback on possible low impact strategies and can embed these in the early geometry.

Determining the fee is of course only half of the story.  Making sure the client understands the value that the LCA is bringing to the design service is equally important.  A client who understands the true benefits of LCA; a performance-based design which is driving innovation to deliver quantified savings against science-based targets, is the client you really want to work with! For more on adding value through LCA take a look at my blog post and Henriques webinar.

Why not come along to our next webinar or training events and develop a deep understanding of whats involved in LCA modelling from scratch over 1 day.