Why 1% for the Planet?

I have to confess, the main reason I floated this idea with the eTool team was because I idolise Yvon Chouinard.   For those who have never heard of him he’s a climber/alpinist who started the Patagonia brand.  He’s now 76 years old so his life experiences make him a very worthy elder.  Check out the movie 180 Degrees South to get an taste. Climbers, surfers, business people and conservationists all revere him for his feats in only their own specialties, his aggregate achievements across all these disciplines is incredible. Yet, humble would have to be the most appropriate word I can muster to describe him, an incredible human.

But my lofty idea based on an infatuation with Yvon Chouinard wouldn’t have amounted to anything had the cause been anything less than noble. The 1% for the Planet cause is noble, and it’s pretty simple. A commitment to give 1% of your company’s sales to non-profits operating in the environmental space. Yes, that’s right, 1% of sales (not profit). It’s a pretty big call, and one that eTool could hardly afford to make given we’re a boot-strapped environmental software startup with very meagre financial resources. Nevertheless, we bit the bullet and joined up. Two years in I think we’re pretty happy we did. It’s a good thing to be a part of, and eTool really hope that those reading this get involved. If you need a bit more motivation, check out this intro to 1% for the Planet (featuring Yvon himself, member #1)…

Future Grid Sensitivity

Context

The standard assumption eTool makes when conducting an LCA is applying the current emission factor of the electricity grid for the specific region over the life of the building. While renewable energy source do not currently make up a large percentage of the energy grid, the cost of renewable technologies has fallen dramatically over recent years. The Australian government also has a legally binding obligation to reduce its emissions by 5% on 1990 levels, under the Kyoto protocol. The Australian government has also committed to an 80% reduction by 2050.

If the decreasing cost of renewable energy trend continues and becomes competitive with coal and gas, the market will naturally shift away from fossil fuels, particularly if fossil fuel subsidies recede. There is also a small but growing consumer demand for more ethical electricity tariffs. This shift of energy sources into the electricity grid opens a potential for a change in the way grid emissions are calculated with life cycle assessment.

Modelling Decarbonisation

Presently in eTool we assume that the grid fuel mix remains at today’s levels for the life of the building. Whilst this is a good conservative position, and drives the right behaviour in terms of energy efficiency, it may divert some focus from other areas of the building, which may be more important if a more realistic future scenario of grid electricity impacts are used.

In response, we have created two other grid emission factors: a 2050 grid and a 2030 grid. The 2050 grid assumes an 80% reduction in the current grid intensity. The 2030 grid takes the average grid intensity over the next 40 years, assuming a linear move towards 80% renewable generation by 2050. The modelled reduction in CO2e intensity is achieved by:

  • Eliminating the most carbon intensive fuels from the current Australian electricity mix and replacing these with a combination of renewable sources, and
  • Increasing the thermal efficiency gas powered generators from 34% up to 50% (implementation of combined cycle turbines)

The fuel mixes and assumed thermal efficiencies for the different grids modelled is shown in Table 1. There are a few flaws in this method that we need to declare: Firstly, the scenarios assume reductions in CO2e intensity of tailpipe emissions only. It does not account life cycle emissions for electricity, which includes impacts associated with fuel extraction and transport upstream from the power plant as well as downstream impacts associated with transmission and distribution. Secondly, if we accepted that this would be enough to meet the 80% reduction in emissions required, the demand for electricity (or energy in general) could not increase. If there is an increase in demand, we would need to further reduce the intensity of Australian emissions and the target is on absolute GHG pollution, not pollution per dollar of GDP, per capita or per kWh. Nevertheless, we think the approach is suitable for the purposes of illustration and discussion, which is the goal of this technical article.

table

Table 1: Modelled Grid Fuel Mixes

Life Cycle Impacts of Residential Buildings

The graph below illustrates how the lower grid scenarios impact on a single residential dwellings life cycle emissions.  Proportionally, embodied emissions have a much larger impact than operational as the grid de-carbonises.

annualised GHG

 

Reconsidering Design Decisions

Generally speaking, there will be a move toward electric based solutions as the grid de-carbonises and the impacts of electricity become competitive with gas. A few recommendations that we typically apply to residential dwellings are shown for the different grid scenarios below.

Design decisions

In this instance, the annual CO2e savings associated with PV have more than halved in the 2050 scenario. Savings from embodied impacts in materials become much more important as the grid decarbonises and materials make up a larger proportion of a buildings CO2e. Moving to fly-ash concrete or replacing carpets gives greater savings than installing a gas hot water unit, which under todays grid scenario would ordinarily provide significantly more.

It’s important to note is that while the transition to a low carbon grid will likely occur incrementally over the coming years, the embodied impacts of the materials are locked in from the day of manufacture. Providing that the grid does decarbonise, material choice can be considered to be equally as important as operational energy, especially when dealing with buildings with a long design life.

What about the gas grid?

We have yet to add a CO2e intensity for future gas grids but watch this space.  There is potential for a reduction in the gas grid emission factor with more input into the gas grid from landfill collection and anaerobic digestion. Then again, potential impacts of shale gas fracking will also need to be considered.

The technologies that make up a dwellings services (cookers, boilers, heat pumps etc.) typically have a lifespan of no more than 20 years. Our approach at eTool remains to recommend the lowest carbon solution based on today’s grids with the assumption/hope that they will be replaced with whatever the lowest carbon solution happens to be in 20 years time.

The future may also bring an appropriate price on carbon and studies show that $150+/tonne reflects the true cost of climate change (social and economic cost), which will drive behavior. For example, a gas hot water system is significantly lower in carbon emissions today but in 20 years time when it is replaced, the electricity grid may have decarbonised such that a heat pump is now the low carbon option. Perhaps the occupant will be further incentivised by the price of a renewable electricity grid versus finite gas with a high carbon price.

What about Materials Future Impacts?

The manufacturing of some materials will decarbonise over the coming years, such as the use of biomass in the heating processes in cement production. However, for a building constructed today, the key structural elements of a building such as the impacts associated with the concrete or steel are locked in on the day of construction. The recurring impacts of replacing high carbon materials like plasterboard and carpet may also decrease as the economy de-carbonises. For some elements, this may be due simply to using renewable electricity in the manufacturing plant. For others it may require something more innovative such as developing sheep food that does not make them burp and fart.

There is a high level of uncertainty associated with future impact intensities for the system processes and materials making up a buildings use phase. For example, as Australia’s economy de-carbonises, the impacts associated with energy inputs, maintenance, replacement, repair, water use, and transport will likely decrease (particularly with regard to global warming potential). This has not been accounted for in the analysis. One could potentially model the effects of this parameter on GWP alone as we do know Australia’s current commitments to reduced greenhouse gas emissions, however, even this is very speculative as we do not know how the economy will decarbonise (through efficiency, reduced growth, alternative fuels, renewable energy sources or other mechanisms). The building energy inputs, and the fuel mix for manufacturing products used through the building life span has therefore been assumed constant, and set at today’s values throughout the modelled life cycle of the building.

What else might change?

Australia has been seeing first-hand the effects of climate change for a number of years. The meteorology department has confirmed that 2013 was the hottest year on record experiencing a greater number and intensity of heat waves than ever before. Even if global CO2e emissions are kept within the threshold for a 2 degree global rise in temperature, we will still need to adapt to the climatic changes that have resulted from our current emissions. The Garnet Institute makes the following predictions regarding changes to climate in Perth assuming no mitigation:

garaut

–          4 degree rise in average temperature in Perth,

–          56% increase in number of days over 35 degrees by 2070

–          15% – 45% reduction in rainfall in Perth by 2070

–          15 – 65% increase in number of days with “Extreme fire risk”

 

In the best case scenario with emissions stabilising at 450 ppm, there is still a 2 degree rise in average temperature across most of Australia. The reality is that we have already passed 400ppm and 550ppm (3 degree rise) is realistic. To adapt to these changes we will see a greatly increased use of air conditioning across all building types to maintain thermal comfort.

 

-Researched and written by Pat Hermon 

 

Research Sources

  1. http://www.therenewableenergycentre.co.uk/solar-heating/
  2. http://www.home-energy-metering.com/solar-thermal-energy.html
  3. http://www.garnautreview.org.au/chp5.html

 

 

LCA Design Life and Functionality

Why This Post?

Well, it turns out it’s REALLY important. My eyes opened to this on the first life cycle assessment we conducted four years ago now. I probably didn’t realise how important it was until more recently though.  The crucial moment was when we did some back of the envelope, top-down carbon budgeting to understand how much greenhouse pollutions our buildings could push into the atmosphere and still enable a stable climate. And this is where it gets interesting. The workings to our rough carbon budget for buildings are here and they throw out a fairly large challenge. In fact, for residential buildings, we need to go net zero operational carbon, and then reduce the remaining embodied emissions by nearly 90%.

Often when you hear the term embodied energy, embodied carbon or embodied impacts, it’s associated with materials choices. Or at least that’s the normal approach to reducing embodied impacts. But there’s an elephant in the living room that’s not being addressed, and this post discusses that. If you don’t want to read about it, sit back and enjoy this video (apologies for the less than professional sound quality).

 

Some LCA Basics

Life Cycle Assessment isn’t just about measuring impacts. One of the key elements of ISO 14040 is to consider the “Functional Unit” of the object of your assessment. The functional unit enables comparisons between variations of the product or services. In the case of buildings, it would correct for things like design life and size. Inherently, it’s correcting for the function of the building. And the formula for the impacts of a building hence becomes:

Life Cycle Assessment Impact Equation for Residential Building

Life Cycle Assessment Impact Equation for Residential Building

As mentioned above, most people focus on reducing the impacts when trying to improve building environmental performance. In reality though, it’s the denominator that often has the most effect on the impact of a building. And this stands to reason. If your building houses more occupants, or lasts longer, it’s providing more benefit for the same initial and disposal impacts (construction and demolition).  As mentioned in a related post here, we actually need to reduce our embodied emissions by nearly 90% to hit a sustainable level of GHG emissions.  So we need every bit of help we can get, and some focus on functionality and design life presents us with some very low hanging fruit.

Design Life

Extending design life is a brilliant way of improving the impacts per functional unit for a buildings. This is because most maintenance, energy and water inputs are pretty constant over the building’s life, where as the initial materials, construction, demolition and disposal impacts are quite independent of design life. For residential buildings in Australia, for example, these initial and end of life impacts total approximately 25% of the total life cycle impacts. So, by doubling design life without any change to energy efficiency, you can reduce the overall impacts of your building by over 12%.

How to Influence Design Life

In order to answer this question we really need to think about what is driving demolitions. There are two good surveys that answer this question quite well. One is from the US and the other Australia. They compliment each other in their answers. Here are the results:

US Study Conducted By Athena:

Reason for RedevelopmentProportionCategorised ReasonProportion
Area Redevelopment35%Not Related to Durability61.3%
No Longer Suitable for Needs22%
Code Compliance Too Expensive2%
Socially Undesirable Use1%
Maintenance Too Expensive0%
Changing Land Values0%
Out Dated Appearance0.90%
Lack of Maintenance23.80%Lack of maintenance / neglect26.4%
Other Physical Condition2.60%
Structural or Material Problem3.50%Durability Issue3.5%
Other2%Other8.8%
Fire Damage7%

Athena, Demolition Survey – Building Service Life Study – Phase Two

There seems to be a surprisingly large proportion of buildings that are being redeveloped for reasons other that structural integrity. So, building strength and durability seems to be only part of the design life story. It gets a lot more interesting when you read this study further, as it turns out the longest lasting buildings are actually timber. This was counter intuitive to me, I would have expected the steel and concrete buildings to be lasting longer than the timber ones. The other interesting thing was that there seems to be a hump that a building needs to get over at the 30-50 year mark, and once it’s over that, it’ll last a long time.

Service Life of Structure Type

 

The Australian survey supports the theme that durability is only part of the story.

Reason for RedevelopmentProportion
Demolished for Site Redevelopment58%
No Longer Suits Owners Needs28%
Other6%
Building Becomes Unserviceable8%

Dynamics of Carbon Stocks in Timber in Australian Residential Housing

Redevelopment Probability

These studies suggest that the durability of a building only plays a small role in predicting service life. Other factors, predominantly redevelopment pressure, are actually more important. The strategies to counter this are relatively simple. I’ve listed a few below:

  • Increase density compared to surrounding suburb through:

– Building value : Land value ratio
– Maximise yield

  • Diversify lot ownership, which increases difficulty for redevelopment in the future
  • Design quality (create timeless character by ensuring house is designed for the site and surrounds)
  • Enable retrofitting (enable occupant density to be increased or building use to be transformed easily without demolition)

Other strategies that assist in extending the service life of the building (or materials) include:

  • Ensure appropriate materials are used to weather any likely natural disasters in a region (e.g. fire)
  • Where redevelopment potential is very low, focus construction methods
  • Design for deconstruction (extend materials service life beyond the building)

We should be thinking of buildings as permanent features, that may stand for many centuries. Whilst this would be a paradigm shift in Australia, there are countless examples of suburbs within the world’s major cities where average design life of existing structures would be well in excess of 100 years. These are cities like London, Paris and Rome where this resilience to redevelopment is in itself the appeal of these cities. There are still pockets of historical buildings in Australian cities also, and our aim should be to promote this approach to the extent that it become the norm.

Functionality

Increasing functionality is perhaps slightly simpler. It does require buy-in from the owner. In the residential context it really comes down to increasing occupancy within the same space. This doesn’t necessarily mean sacrificing life-style. Very well considered design will yield efficiencies in ensuring that every square metre of floor space is well utilised. Integration of stairs, corridors, studies, entertainment areas etc into bedrooms or living rooms are examples of efficient design. It also pays to compare our current residential functional average to that of our past, and also other countries. The chart below shows that over the last 35 years, Australia has trended badly in terms of environmental sustainability in relation to functionality of residential buildings. During this period, the average size of new buildings has significantly increased, whist the occupancy per dwelling has dropped. It’s encouraging to see a recent reversal in this trend, and we hope it continues.

Australian Residential Building Functionality TrendsWhen we look at he space per person, it’s increased from 54 to 96 square metres.  Compare this to the average space per occupant in the UK of 32 square metres and it’s clear that we have some wiggle room in this area.

In commercial buildings, there’s very good financial incentive for improving floor plate efficiency as it means greater rent. Small changes can yield big uplift in rental revenue. Intelligent strategies to improve floor plate efficiency include:

  • Sharing services between floors
  • Optimising lift size, speed and number
  • Minimising services risers
  • Minimising circulation ways

The common areas associated with large apartments or office buildings are also very worthy of attention. In Australia particularly, car parks often amount to 25% of total floor space or more. This is a huge burden on the useful floor area of the building, not only in terms of embodied impacts, but also operationally, due to lighting and ventilation requirements. Currently, car park efficiency is an area that doesn’t receive a lot of attention. We have yet to see a design brief where a developer has stipulated a target floor area per car park. Good practice internationally is 20 square meters per car space, and this is with a normal 90 degree layout. If the car park is large enough to accommodate loop, by moving to 45 degree angle parking the space requirements can be reduced even further. This is enabled by reducing the required space to pull in and out of the park to a single lane for 45 degrees nose-in parking, whereas 90 degree parking requires two lanes. It’s not uncommon to see car parks in Perth buildings requiring 30 square meters of space per car park, so there’s huge potential in this area for efficiency improvements and cost gains. Could that three level basement car park be optimised and reduced to two? Ask the question and refer to some international benchmarks on car park design, you might be pleasantly surprised.

Close

The most frustrating thing about all these great opportunities to improve a building’s design life or functionality is that we rarely get to help people do it. The reason is, it’s usually been designed by the time we’re engaged. There’s a nice chart, a version of which is below, that explains how as a project progresses from brief to concept to construction and onwards, the ability to influence it’s environmental performance drops off sharply. This post effectively explains a bit part of the reason why. There are other design opportunities that also need early consideration to become feasible as well. We recognised this pretty early on at eTool and developed way of running ‘scoping study’ LCAs to help design teams identify and reduce environmental impact ‘hot spots’ in their concept designs. We’ve taken this a step further now by offering a target setting service. We can help a design team develop performance targets for their building before a concept design has even been dreamt up. All we really need is a draft brief and we can profile the life cycle impacts of a normal approach to delivering the intended function of the building. We then use this model to simulate improvements that the owner and design team want to target, these can include design life or functionality improvements. Early feedback on this service has been great, get in touch if you want more information.

Building Life Cycle Environmental Influence

 

 

 

 

A Rough Carbon Budget For Buildings

Why A Carbon Budget?

As we learn more about greenhouse (GHG) pollution and global warming we’re getting better at understanding cause and effect. There’s lots of complexity, obviously. However, the variables are slowly being identified, tested, and fed back into the models. Last year the media latched onto a story that global warming had ceased. I wish the stories indeed did debunk climate theory. Unfortunately not. We’re just in a period of warmer oceans and cooler atmosphere. Will Steffen explained this in a very objective manner when questioned in the Senate Committee on Extreme Weather Events (see page 12 of this transcript). Anyway, all the scientific research into climate change now enables us to make predictions of warming based on the volume of GHG we release into the atmosphere. And we’re even able to make predictions about what effects this may have. The below infographic is an incredibly good summary of these predictions, and the background data is rock solid if you’re interesting in looking into this further.

KIB_Gigatons_CO2_Apr14_A4

 

It’s pretty clear we need to try to limit warming to two degrees. The big reason for this is that there are tipping points for our climate, which trigger events that force more warming. Some examples include melting of arctic tundra and stored methane, release of methane from sea bed methane clathrates or the collapse of the amazon due to drought and fire. We don’t actually know at what point these events will happen and they may even happen before we get to two degrees warming. What we do know, is that it’s highly likely they will happen if we keep warming the planet. Even without these events occurring, we’re on track for four degrees of warming by the end of the century. Four degrees will probably put so much pressure on food resources there’ll be major global conflict. Not over land, or oil, but over food. It could get very messy.

A Per Capita Carbon Budget

So, we need to work out how much more carbon we can release to avoid these events, we need to set a budget. There is actually a level of GHG pollution that the planet can happily cope with naturally through chemical and biological sequestration. It’s a rubbery number, but sits at about 2.0 tCO2e per person. In 2050, accounting for population growth, we really need to be aiming for approximately 1.0 t CO2e per person per year which would actually enable us to reduce the GHG in the atmosphere. This, then, is our sustainable level of GHG emissions on a per capita basis. Some calculations on this here and here (with slightly different results).

Apportioning to Economic Sectors

Relating this to buildings is a little difficult because we don’t really know how the economy is going to decarbonise. There might be breakthroughs in certain sectors that enable it to effectively zero its GHG emissions, whilst others may find it very hard to shake the existing thirst for fossil fuels (or land use change). If however, we assume that all major sectors of the economy decarbonize together, then we can essentially take each sector’s current percentage of GHG emissions and multiply it by 1.0 t CO2e to yield the per capita budget for each sector. This is one of the best diagrams I have come across to explain GHG flows through the economy. It’s taken from a great publication called Navigating the Numbers.

GHG Flows

GHG Flows

In the diagram, the column “end use activity” is what we need to focus on to determine how current GHGs are apportioned across our economy. Directly, buildings are responsible for 15.3% of GHGs. However, there are a lot of indirect emissions that relate to buildings if you take a life cycle approach to measuring an impact of a building. These include transportation of materials to the site, transportation of equipment and labour, construction energy, emissions relating to materials production, further transport, and equipment use to maintain the building. Then deconstruction, demolition and landfill emissions. There may also be land use change emissions associated with some building products, or urbanisation as well. If we make the below assumptions regarding the allocation of these indirect emissions to buildings (which are not based on research, but I believe are reasonable), we land at a number of 26% of total GHG emissions relating to buildings.

  • 60% of building energy use relates to electricity to determine distribution and transmission losses
  • 70% of coal is used for electricity or downstream processes attributed to buildings
  • 30% of oil and gas gets used for electricity or downstream processes that can be attributed to buildings
  • Unallocated fuel combustion is proportionally attributed to all end uses
  • 1% of air transport and 10% of all other transport relates to building construction, maintenance, design or management.
  • 50% of iron, steel and cement is used in building construction or maintenance
  • 10% of chemicals are used in building construction or maintenance
  • 25% of aluminium and non ferrous metals are used in building construction or maintenance
  • 10% of other industries are providing materials or services to building construction or maintenance
  • 25% of land use change emissions due to harvest and management of forests relate to construction and maintenance of buildings
  • 15% of all landfill gas emissions relate to disposal of construction waste
  • 75% of waste water treatment emissions relate to building waste water

Building Related Emissions

These assumptions and calculations at this point are moving pretty quickly towards “back of the envelope”. The only way I can really justify this is that there are no numbers out there telling us what is a sustainable level of GHG emissions for buildings. So don’t hang your hat on these numbers, however, in lieu of more robust calculations, here’s a starting point.

A Carbon Budget For Buildings

We can now set a rough carbon footprint for environmentally sustainable buildings at 260kgCO2e per year per capita. This will be split between residential dwellings and other buildings. If we assume the split is the same as the direct GHG split in the “Navigating the Numbers” flow chart, that gives us a budget of 168kgCO2e per year per capita for residences, with the remainder of building related GHG distributed to workplaces, hospitals, civic buildings etc. We haven’t done any work on how to distribute the remainder amongst these other buildings as it gets pretty complex but watch this space. For residential buildings in Australia, we have a lot of work to do to achieve this budget. See the below chart for a visual on that.

Australian Residential Buildings

Close

Although these numbers require more work to confirm, they provide some guidance in lieu of other sources. They display the extent of the challenge. In particular, note in the last chart that the target is many times less than even the embodied GHG of current “average” buildings in Australia. I extend on this topic in this post, exploring some lateral thinking to solving the challenge of hitting our carbon budget for buildings. Note, this is an update on the video attached to the next post so you may spot a difference in the figures.

 

 

EN 15978

In 2011 the European Committee for Standardisation (CEN) released a new standard for measuring the environmental sustainability of buildings.  We grabbed a copy of this standard, EN 15978 soon after it was published to understand how eTool stacked up against the requirements.  We breathed a sigh of relief, although we had a few things to tidy up, what we were happy with was that we actually needed to reduce the scope and system boundary of a normal eToolLCA to report to EN15978.

Background to EN15978

This standard was one of the first to be released by CEN Technical Committee 350.  It was part of a much broader project to fully define how to measure the sustainability of buildings.  Within TC 350 there were working groups determining how to measure a building’s:

  • Environmental Performance,
  • Social Performance, and
  • Economic Performance.

Impressive.  The full suite of sustainability covered under one set group of standards.  And it doesn’t stop there, there are also working groups covering civil works and construction products.  Incredibly, they are making very good headway through this arduous scope with 8 standards already published and another four under development.  EN15978 is the key to measuring the environmental pillar of sustainability.

How Does it Work?

Well, it’s kind of complex you have to read the detail of the standard, and a good number of the standards referenced.  That said, we will summarise as best we can.  The basic philosophy is to rely 100% on LCA as the method of measuring environmental performance.  So there is hence a heavy reliance on ISO 14040, 14044 and 14025 which eTool LCA software also heavily draws on.  The standard gives guidance on how to apply LCA to buildings.  It effectively defines the goal, scope and method for LCA practitioners working on buildings.

The System Boundary

The diagram below shows the system boundary of EN 15978 is shown below.  For existing users of eTool LCA, or those who rely on eTool ratings, our standard system boundary is also shown.  We think the EN 15978 have essentially done a fantastic job putting this together (with a few exceptions we discuss below).

EN 15978 and eTool LCA Normal System Boundary

EN 15978 and eTool LCA Normal System Boundary

The largest omission from the system boundary is what EN15978 calls “non building related energy use”.  They essentially include HVAC, domestic hot water and lighting but exclude all other energy used within the building.  This makes sense at first glance, after all, these areas are certainly the most heavily influenced by the building designers, and other energy use is very heavily occupant driven.  There are however some strong arguments for including all energy used within the building, a few of which are listed below:

  • A building designer can influence occupant behaviour, and as such these aspects should be considered by architects and engineers, for example:
    • Energy monitoring has been proven to influence occupant behaviour in both commercial and residential buildings and should be considered by the design team
    • In residential buildings, energy use per occupant generally drops off with higher occupants per dwellings due to the base loads (refrigeration, living area entertainment, standby loads, lighting and heat losses from hot water systems) being spread between more occupants.  Buildings that allow and encourage more occupants per dwelling will (all else being equal) use less energy per occupant, and hence should be differentiated.
    • In commercial buildings, an integrated fit out of work stations can have huge positive impacts on energy use through the use of central servers for data storage and processing and mini computers at work stations drawing very little power.  A seamless implementation of such systems may require architectural and engineering consideration during the design of the building so should be factored.
  • Building integrated renewable energy systems should if possible be sized to meet the entire load of the building, not just the base building loads, so designers should be aware of the entire loads.
  • Developers can have a large influence on the building performance (at least initially) through the final fit out of appliances (residential) and work stations (commercial) so this should be within scope so we don’t drop the ball on this opportunity.
  • Vertical transport (elevators, escalators etc) for medium rise buildings can be heavily influenced by design:
    • The building envelope needs to cater for the most efficient plant geometrically
    • The use of stairs or ramps should be encouraged through design to reduce reliance on plant
    • The building electrical systems should be designed to cater for regenerative drives etc
  • Communicating the total impact of buildings without accounting for occupant energy use is very misleading.  Imagine moving into a building marketed as ‘energy neutral’ building only to find your power bill only drops 25%

Environmental Indicators

The suggested list of reported indicators is quite comprehensive for EN15978 and is shown in the below summary table:

 EN15978 Indicators

EN15978 does state that not all indicators need to be reported, but the documentation must specify the reasons for omission.  Interestingly toxicity, land use, biodiversity are missing from the above list.  The standard states that this is due to there being no scientifically agreed calculation method within the context of LCA for these indicators.  We’ll watch this space as we know some of these missing indicators are of great interest to many users of eTool.

EN 15978 and eTool LCA

After we read EN15978, we documented the required changes, pushed them into our product roadmap we got back to other work.  It wasn’t for another year though before it hit us how important this standard was.  All of a sudden, we weren’t “those guys from Western Australia who think they’ve nutted out how to truly improve the environmental performance of buildings”, EN15978 established that LCA was indeed the most appropriate tool for profiling green buildings.  Standards such as this one lend huge credibility to solutions like eTool that were released prior to the standard.  We were definitely barking up the right tree when we naively stood in front of the cameras on the ABC’s New Inventors and demonstrated the humble beginnings of eTool!

The recent uptake of LCA by the Green Building Council of Australia in their Greenstar tool heavily references  EN15978.  This has prompted us to build a suite of reports that are compliant with the standard, and those it references.  Importantly, we’re not going to remove any functionality form eTool, or contract the scope or system boundary.  Users will simply have the opportunity to report to either the EN15978 scope or the more expansive eTool LCA scope.  Similarly we’ll continue to upload more indicators into eTool LCA, our focus for the next 12 months will be plugging the gaps for EN15978 reporting.  There’s likely to be a lot of low hanging fruit here, and some trickier ones that may take some additional programming so we’re not entirely sure when we’ll be reporting on all 22 indicators just yet.  Our reports will be compliant with EN15978 though by still listing these additional indicators with “INA” (Indicator Not Assessed) in place of the calculated values which is accepted in the standard.  We’ll also allow users to report indicators currently available in eTool that aren’t required by EN15978.  Our general position on indicators is that global warming is our biggest environmental problem and hence our main efforts will continue to focus on solving this.

One Planet Living Australia + The Green Economy Perth Event

BioRegional have been taking their award winning One Planet Living Principles on the road with projects popping up around the world in the US, UK and across Europe at breakneck speed. Now it’s Australia’s turn as Pooran Desai, BioRegional’s Co-Founder and International Director tours the major cities this June to share success stories and explain how the framework can be applied to new developments throughout Australia.

Pooran touched down on Monday and will be heading to Perth next week for a series of breakfast, afternoon and dinner events across the city. Alex has been invited to speak at the Evening Lecture on One Planet Living Australia and The Green Economy next Wednesday 5th June alongside West Australia’s key speakers on the subject of sustainability and the built environment.

Speakers include:

Pooran Desai is the International Director and Co-Founder of BioRegional, the social enterprise and sustainability charity behind the creation of Britain’s best-known sustainable community, Beddington Zero Emission Development (BedZED). He will share first hand knowledge around the design, construction and monitoring of BedZED, which led to the development of the concept of One Planet Living. In addition he will talk about his vision for a sustainable future based on the concept of Green Economy and the opportunities this presents.

Peter Newman is the Professor of Sustainability at Curtin University and Director of CUSP which has 60 PhD students working on all aspects of the green economy. Peter is on the Board of Infrastructure Australia that is funding infrastructure for the long term sustainability of Australian cities, and is a Lead Author for Transport on the IPCC. He is a Visiting Professor in the School of Architecture at the National University of Singapore. Peter also is on the Board of Infrastructure Australia that is funding infrastructure for the long term sustainability of Australian cities.

Alex Bruce (Co-Founder, eTool)  is a mechanical and sustainable energy engineer with over six years experience in the renewable energy and energy management sector. Alex has specifically focused on the built environment from residential to commercial applications. Since eTool was founded, Alex has worked with architects, developers and international engineers, educating, training and providing sustainable solutions to challenging technical engineering problems.

Mark Pitman (Principal, Cundall) is an experienced industry consultant as well as academic researcher. Mark’s presentation will give an overview of current trends in the ESD, sustainability and “green buildings”. It will cover rating tools and methodologies for benchmarking the environmental impact of a project in construction as well as operation and a comparison of these across the Australian market as well as developments internationally

To ensure your place for this *FREE* evening event at CUSP, visit BioRegional’s registration page here.

The One Planet Living Journey

Cundall is the world’s first consultancy to be formally endorsed as a One Planet Company by sustainability charity BioRegional. In this presentation Simon Wild will talk about how Cundall have achieved this endorsement including some of the challenging targets we have set against the 10 One Planet Living principles, originally developed by WWF and BioRegional. Mark Pitman will then explain how the have approached this in Perth and discuss how the One Planet Living Principals can apply to Western Australia.

During this seminar, you will hear about the successes, failures, lessons learnt, obstacles so far, and the challenges ahead to run a business within the resources of a single planet.


Attendance of this event will earn 1 GBCA CPD Point

When: Thursday 14 March, 2013 at 4:15 PM (WST)

Where: Level 1, 40-44 Pier Street, Perth

Tickets: Register here

 

How to design a low carbon building

When it comes to designing your dream green home, there’s a lot to consider, are you going: carbon neutral, net-zero, off the grid, energy efficient, high performance or sacrificially sustainable?

With so much to think about, people often get hung up on the finer details like specific solar system sizes, rainwater harvesting and wooden fixtures and fittings, leaving the sustainable design to their architect or engineer.

But we’re here to tell you, it’s really not that hard! Once you start thinking about what low carbon is really about,  you can put these simple ideas into place and influence your final, sustainable design.

We work with low carbon designs everyday and put together a few keys points that can make a huge difference to the overall footprint…

1. Use life cycle design philosophy

2. Make it financially attractive

3. Design for the future…make it last

4. Make it functional

5. Choose quality over quantity

6. Use low embodied energy materials

7. Remember the 3 R’s

8. Think local, but not always

9. Make it climate sensible

10. Don’t land in hot water with your energy bills

11. Get a refresher on renewable energy

12. Low carbon doesn’t always mean sustainable…

 

Download our complete guide to low carbon building design!

Check back soon for more information about choosing locations, deciding about material distance and transportation and finding out whether solar PV really is that sustainable.

Driving change in retail construction

Over the last few months, we’ve been working with conscientious building company Interface Constructions who really ‘walk the talk’ when it comes to marrying sustainability and the retail sector. With a strong environmental ethos driven by director Marc Masci, they are certainly leading the way, and to our knowledge are the first builders in Australia to offer carbon offset construction services to the retail industry.

Marc became interested in understanding the embodied carbon related to his work and has been using eTool LCA to measure all of his projects, both past and present. Since our first project with Marc, Interface have implemented a carbon management program and will be using eTool during the design phase to lower the carbon impact of his future retail projects.

Partnering with not for profit Carbon Neutral, Marc has already offset 20 tonnes with Australian native tree planting projects and will be featured as their Carbon Hero of the month in February.

For more information about Interface Constructions’ work with us, click here.

 

The Sustainable Streets & Communities Plan

Henrique and I recently went down to Freo to attend a talk by Michael Mobbs of Sustainable House fame. Michael is a sustainability consultant who decided to build himself and his family an entirely self sufficient home in Sydney about 15 years ago.

As well as talking about how to build sustainable homes, Michael shared his passion for creating communities that could grow their own food, recycle grey water and take back the power to make where they live and work greener and more sustainable.

Chippendale – where Michael lives – has become a shining example of how successful such a plan could be. Critical to the plan is community involvement and volunteers; with people offering their time to weed, mulch, make new garden beds, aerate the compost and plant seedlings etc. Food is grown on roadsides, around trees, on rooftops or basically anywhere there is potential to grow herbs and salads to seasonal fruit and vegetables.

In 2010, Michael was commissioned by the City of Sydney to come up with a sustainable community plan based on Chippendale that they could role out to other cities.

After initial resistance to The Plan and a national petitioning campaign, the City of Sydney Environment and Heritage Committee has this week recommended a public exhibition of the Sustainable Streets and Communities Plan for public comment.

At the heart of the plan are ideas to lower our consumption and waste, reduce our GreenHouse Gas emissions and slow down climate change. Projects include ways to utilise rainwater, reuse grey water, lower the temperature of roads and create more space for community use.

Michael believes that through the plan, it will only take 10 years for the suburb to get all of its water from rainwater. reuse all sewage and have more than 30 per cent of food grown in urban farms, road gardens and rooftops.

To get involved or learn more about becoming more sustainable in your community, join the conversation on Facebook or Twitter.